Finite element exterior calculus with lower-order terms

نویسندگان

  • Douglas N. Arnold
  • Lizao Li
چکیده

The scalar and vector Laplacians are basic operators in physics and engineering. In applications, they frequently show up perturbed by lowerorder terms. The effect of such perturbations on mixed finite element methods in the scalar case is well understood, but that in the vector case is not. In this paper, we first show that, surprisingly, for certain elements there is degradation of the convergence rates with certain lower-order terms even when both the solution and the data are smooth. We then give a systematic analysis of lower-order terms in mixed methods by extending the Finite Element Exterior Calculus (FEEC) framework, which contains the scalar, vector Laplacian, and many other elliptic operators as special cases. We prove that stable mixed discretization remains stable with lower-order terms for sufficiently fine discretization. Moreover, we derive sharp improved error estimates for each individual variable. In particular, this yields new results for the vector Laplacian problem which are useful in applications such as electromagnetism and acoustics modeling. Further, our results imply many previous results for the scalar problem and thus unify them all under the FEEC framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 1 50 9 . 06 46 3 v 1 [ m at h . N A ] 2 2 Se p 20 15 FINITE ELEMENT EXTERIOR CALCULUS WITH LOWER - ORDER TERMS DOUGLAS

The scalar and vector Laplacians are basic operators in physics and engineering. In applications, they show up frequently perturbed by lowerorder terms. The effect of such perturbations on mixed finite element methods in the scalar case is well-understood, but that in the vector case is not. In this paper, we first show that surprisingly for certain elements there is degradation of the converge...

متن کامل

On high order finite element spaces of differential forms

We show how the high order finite element spaces of differential forms due to Raviart-Thomas-Nédelec-Hiptmair fit into the framework of finite element systems, in an elaboration of the finite element exterior calculus of Arnold-Falk-Winther. Based on observations by Bossavit, we provide new low order degrees of freedom. As an alternative to existing choices of bases, we provide canonical resolu...

متن کامل

Numerical Experiments for Darcy Flow on a Surface Using Mixed Exterior Calculus Methods

There are very few results on mixed finite element methods on surfaces. A theory for the study of such methods was given recently by Holst and Stern, using a variational crimes framework in the context of finite element exterior calculus. However, we are not aware of any numerical experiments where mixed finite elements derived from discretizations of exterior calculus are used for a surface do...

متن کامل

Geometric Aspects of Discretized Classical Field Theories: Extensions to Finite Element Exterior Calculus, Noether Theorems, and the Geodesic Finite Element Method

OF THE DISSERTATION Geometric Aspects of Discretized Classical Field Theories: Extensions to Finite Element Exterior Calculus, Noether Theorems, and the Geodesic Finite Element Method by Joe Salamon Doctor of Philosophy in Physics University of California San Diego, 2016 Professor Melvin Leok, Chair Professor Michael Holst, Co-Chair In this dissertation, I will discuss and explore the various t...

متن کامل

Finite element differential forms

A differential form is a field which assigns to each point of a domain an alternating multilinear form on its tangent space. The exterior derivative operation, which maps differential forms to differential forms of the next higher order, unifies the basic first order differential operators of calculus, and is a building block for a great variety of differential equations. When discretizing such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2017